Copied to
clipboard

G = C24.12D10order 320 = 26·5

12nd non-split extension by C24 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.12D10, (C2xC20):20D4, C23:2(C4xD5), C10.94(C4xD4), (C2xDic5):16D4, C10.38C22wrC2, D10:3(C22:C4), C2.2(C20:2D4), C22.101(D4xD5), (C22xC4).31D10, C2.6(D10:D4), C2.3(C23:D10), C10.31(C4:D4), (C22xD5).125D4, C5:3(C23.23D4), C22.53(C4oD20), (C23xC10).39C22, C23.283(C22xD5), C10.10C42:39C2, C2.27(Dic5:4D4), C2.7(D10.12D4), C22.48(D4:2D5), (C22xC20).344C22, (C22xC10).330C23, (C23xD5).100C22, C10.32(C22.D4), (C22xDic5).43C22, (C2xC5:D4):9C4, C2.9(C4xC5:D4), (C2xC22:C4):3D5, (D5xC22xC4):13C2, (C2xC4):12(C5:D4), (C2xDic5):7(C2xC4), (C2xC23.D5):3C2, C2.29(D5xC22:C4), (C2xD10:C4):4C2, (C10xC22:C4):22C2, C22.127(C2xC4xD5), (C22xC10):13(C2xC4), (C2xC10).322(C2xD4), C10.69(C2xC22:C4), (C22xC5:D4).2C2, C22.51(C2xC5:D4), (C22xD5).78(C2xC4), (C2xC10).145(C4oD4), (C2xC10).210(C22xC4), SmallGroup(320,583)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C24.12D10
C1C5C10C2xC10C22xC10C23xD5C22xC5:D4 — C24.12D10
C5C2xC10 — C24.12D10
C1C23C2xC22:C4

Generators and relations for C24.12D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=f2=b, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e9 >

Subgroups: 1118 in 286 conjugacy classes, 77 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2xC4, C2xC4, D4, C23, C23, C23, D5, C10, C10, C22:C4, C22xC4, C22xC4, C2xD4, C24, C24, Dic5, C20, D10, D10, C2xC10, C2xC10, C2.C42, C2xC22:C4, C2xC22:C4, C23xC4, C22xD4, C4xD5, C2xDic5, C2xDic5, C5:D4, C2xC20, C2xC20, C22xD5, C22xD5, C22xC10, C22xC10, C22xC10, C23.23D4, D10:C4, C23.D5, C5xC22:C4, C2xC4xD5, C22xDic5, C2xC5:D4, C2xC5:D4, C22xC20, C23xD5, C23xC10, C10.10C42, C2xD10:C4, C2xC23.D5, C10xC22:C4, D5xC22xC4, C22xC5:D4, C24.12D10
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, D5, C22:C4, C22xC4, C2xD4, C4oD4, D10, C2xC22:C4, C4xD4, C22wrC2, C4:D4, C22.D4, C4xD5, C5:D4, C22xD5, C23.23D4, C2xC4xD5, C4oD20, D4xD5, D4:2D5, C2xC5:D4, D5xC22:C4, Dic5:4D4, D10.12D4, D10:D4, C4xC5:D4, C23:D10, C20:2D4, C24.12D10

Smallest permutation representation of C24.12D10
On 160 points
Generators in S160
(1 133)(2 59)(3 135)(4 41)(5 137)(6 43)(7 139)(8 45)(9 121)(10 47)(11 123)(12 49)(13 125)(14 51)(15 127)(16 53)(17 129)(18 55)(19 131)(20 57)(21 144)(22 89)(23 146)(24 91)(25 148)(26 93)(27 150)(28 95)(29 152)(30 97)(31 154)(32 99)(33 156)(34 81)(35 158)(36 83)(37 160)(38 85)(39 142)(40 87)(42 77)(44 79)(46 61)(48 63)(50 65)(52 67)(54 69)(56 71)(58 73)(60 75)(62 122)(64 124)(66 126)(68 128)(70 130)(72 132)(74 134)(76 136)(78 138)(80 140)(82 116)(84 118)(86 120)(88 102)(90 104)(92 106)(94 108)(96 110)(98 112)(100 114)(101 143)(103 145)(105 147)(107 149)(109 151)(111 153)(113 155)(115 157)(117 159)(119 141)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 86)(2 87)(3 88)(4 89)(5 90)(6 91)(7 92)(8 93)(9 94)(10 95)(11 96)(12 97)(13 98)(14 99)(15 100)(16 81)(17 82)(18 83)(19 84)(20 85)(21 60)(22 41)(23 42)(24 43)(25 44)(26 45)(27 46)(28 47)(29 48)(30 49)(31 50)(32 51)(33 52)(34 53)(35 54)(36 55)(37 56)(38 57)(39 58)(40 59)(61 150)(62 151)(63 152)(64 153)(65 154)(66 155)(67 156)(68 157)(69 158)(70 159)(71 160)(72 141)(73 142)(74 143)(75 144)(76 145)(77 146)(78 147)(79 148)(80 149)(101 134)(102 135)(103 136)(104 137)(105 138)(106 139)(107 140)(108 121)(109 122)(110 123)(111 124)(112 125)(113 126)(114 127)(115 128)(116 129)(117 130)(118 131)(119 132)(120 133)
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 61)(10 62)(11 63)(12 64)(13 65)(14 66)(15 67)(16 68)(17 69)(18 70)(19 71)(20 72)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 109)(29 110)(30 111)(31 112)(32 113)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 101)(41 136)(42 137)(43 138)(44 139)(45 140)(46 121)(47 122)(48 123)(49 124)(50 125)(51 126)(52 127)(53 128)(54 129)(55 130)(56 131)(57 132)(58 133)(59 134)(60 135)(81 157)(82 158)(83 159)(84 160)(85 141)(86 142)(87 143)(88 144)(89 145)(90 146)(91 147)(92 148)(93 149)(94 150)(95 151)(96 152)(97 153)(98 154)(99 155)(100 156)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 45 31 55)(22 54 32 44)(23 43 33 53)(24 52 34 42)(25 41 35 51)(26 50 36 60)(27 59 37 49)(28 48 38 58)(29 57 39 47)(30 46 40 56)(61 74 71 64)(62 63 72 73)(65 70 75 80)(66 79 76 69)(67 68 77 78)(81 90 91 100)(82 99 92 89)(83 88 93 98)(84 97 94 87)(85 86 95 96)(101 131 111 121)(102 140 112 130)(103 129 113 139)(104 138 114 128)(105 127 115 137)(106 136 116 126)(107 125 117 135)(108 134 118 124)(109 123 119 133)(110 132 120 122)(141 142 151 152)(143 160 153 150)(144 149 154 159)(145 158 155 148)(146 147 156 157)

G:=sub<Sym(160)| (1,133)(2,59)(3,135)(4,41)(5,137)(6,43)(7,139)(8,45)(9,121)(10,47)(11,123)(12,49)(13,125)(14,51)(15,127)(16,53)(17,129)(18,55)(19,131)(20,57)(21,144)(22,89)(23,146)(24,91)(25,148)(26,93)(27,150)(28,95)(29,152)(30,97)(31,154)(32,99)(33,156)(34,81)(35,158)(36,83)(37,160)(38,85)(39,142)(40,87)(42,77)(44,79)(46,61)(48,63)(50,65)(52,67)(54,69)(56,71)(58,73)(60,75)(62,122)(64,124)(66,126)(68,128)(70,130)(72,132)(74,134)(76,136)(78,138)(80,140)(82,116)(84,118)(86,120)(88,102)(90,104)(92,106)(94,108)(96,110)(98,112)(100,114)(101,143)(103,145)(105,147)(107,149)(109,151)(111,153)(113,155)(115,157)(117,159)(119,141), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,81)(17,82)(18,83)(19,84)(20,85)(21,60)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(61,150)(62,151)(63,152)(64,153)(65,154)(66,155)(67,156)(68,157)(69,158)(70,159)(71,160)(72,141)(73,142)(74,143)(75,144)(76,145)(77,146)(78,147)(79,148)(80,149)(101,134)(102,135)(103,136)(104,137)(105,138)(106,139)(107,140)(108,121)(109,122)(110,123)(111,124)(112,125)(113,126)(114,127)(115,128)(116,129)(117,130)(118,131)(119,132)(120,133), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,61)(10,62)(11,63)(12,64)(13,65)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,101)(41,136)(42,137)(43,138)(44,139)(45,140)(46,121)(47,122)(48,123)(49,124)(50,125)(51,126)(52,127)(53,128)(54,129)(55,130)(56,131)(57,132)(58,133)(59,134)(60,135)(81,157)(82,158)(83,159)(84,160)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,45,31,55)(22,54,32,44)(23,43,33,53)(24,52,34,42)(25,41,35,51)(26,50,36,60)(27,59,37,49)(28,48,38,58)(29,57,39,47)(30,46,40,56)(61,74,71,64)(62,63,72,73)(65,70,75,80)(66,79,76,69)(67,68,77,78)(81,90,91,100)(82,99,92,89)(83,88,93,98)(84,97,94,87)(85,86,95,96)(101,131,111,121)(102,140,112,130)(103,129,113,139)(104,138,114,128)(105,127,115,137)(106,136,116,126)(107,125,117,135)(108,134,118,124)(109,123,119,133)(110,132,120,122)(141,142,151,152)(143,160,153,150)(144,149,154,159)(145,158,155,148)(146,147,156,157)>;

G:=Group( (1,133)(2,59)(3,135)(4,41)(5,137)(6,43)(7,139)(8,45)(9,121)(10,47)(11,123)(12,49)(13,125)(14,51)(15,127)(16,53)(17,129)(18,55)(19,131)(20,57)(21,144)(22,89)(23,146)(24,91)(25,148)(26,93)(27,150)(28,95)(29,152)(30,97)(31,154)(32,99)(33,156)(34,81)(35,158)(36,83)(37,160)(38,85)(39,142)(40,87)(42,77)(44,79)(46,61)(48,63)(50,65)(52,67)(54,69)(56,71)(58,73)(60,75)(62,122)(64,124)(66,126)(68,128)(70,130)(72,132)(74,134)(76,136)(78,138)(80,140)(82,116)(84,118)(86,120)(88,102)(90,104)(92,106)(94,108)(96,110)(98,112)(100,114)(101,143)(103,145)(105,147)(107,149)(109,151)(111,153)(113,155)(115,157)(117,159)(119,141), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,81)(17,82)(18,83)(19,84)(20,85)(21,60)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(61,150)(62,151)(63,152)(64,153)(65,154)(66,155)(67,156)(68,157)(69,158)(70,159)(71,160)(72,141)(73,142)(74,143)(75,144)(76,145)(77,146)(78,147)(79,148)(80,149)(101,134)(102,135)(103,136)(104,137)(105,138)(106,139)(107,140)(108,121)(109,122)(110,123)(111,124)(112,125)(113,126)(114,127)(115,128)(116,129)(117,130)(118,131)(119,132)(120,133), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,61)(10,62)(11,63)(12,64)(13,65)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,101)(41,136)(42,137)(43,138)(44,139)(45,140)(46,121)(47,122)(48,123)(49,124)(50,125)(51,126)(52,127)(53,128)(54,129)(55,130)(56,131)(57,132)(58,133)(59,134)(60,135)(81,157)(82,158)(83,159)(84,160)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,45,31,55)(22,54,32,44)(23,43,33,53)(24,52,34,42)(25,41,35,51)(26,50,36,60)(27,59,37,49)(28,48,38,58)(29,57,39,47)(30,46,40,56)(61,74,71,64)(62,63,72,73)(65,70,75,80)(66,79,76,69)(67,68,77,78)(81,90,91,100)(82,99,92,89)(83,88,93,98)(84,97,94,87)(85,86,95,96)(101,131,111,121)(102,140,112,130)(103,129,113,139)(104,138,114,128)(105,127,115,137)(106,136,116,126)(107,125,117,135)(108,134,118,124)(109,123,119,133)(110,132,120,122)(141,142,151,152)(143,160,153,150)(144,149,154,159)(145,158,155,148)(146,147,156,157) );

G=PermutationGroup([[(1,133),(2,59),(3,135),(4,41),(5,137),(6,43),(7,139),(8,45),(9,121),(10,47),(11,123),(12,49),(13,125),(14,51),(15,127),(16,53),(17,129),(18,55),(19,131),(20,57),(21,144),(22,89),(23,146),(24,91),(25,148),(26,93),(27,150),(28,95),(29,152),(30,97),(31,154),(32,99),(33,156),(34,81),(35,158),(36,83),(37,160),(38,85),(39,142),(40,87),(42,77),(44,79),(46,61),(48,63),(50,65),(52,67),(54,69),(56,71),(58,73),(60,75),(62,122),(64,124),(66,126),(68,128),(70,130),(72,132),(74,134),(76,136),(78,138),(80,140),(82,116),(84,118),(86,120),(88,102),(90,104),(92,106),(94,108),(96,110),(98,112),(100,114),(101,143),(103,145),(105,147),(107,149),(109,151),(111,153),(113,155),(115,157),(117,159),(119,141)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,86),(2,87),(3,88),(4,89),(5,90),(6,91),(7,92),(8,93),(9,94),(10,95),(11,96),(12,97),(13,98),(14,99),(15,100),(16,81),(17,82),(18,83),(19,84),(20,85),(21,60),(22,41),(23,42),(24,43),(25,44),(26,45),(27,46),(28,47),(29,48),(30,49),(31,50),(32,51),(33,52),(34,53),(35,54),(36,55),(37,56),(38,57),(39,58),(40,59),(61,150),(62,151),(63,152),(64,153),(65,154),(66,155),(67,156),(68,157),(69,158),(70,159),(71,160),(72,141),(73,142),(74,143),(75,144),(76,145),(77,146),(78,147),(79,148),(80,149),(101,134),(102,135),(103,136),(104,137),(105,138),(106,139),(107,140),(108,121),(109,122),(110,123),(111,124),(112,125),(113,126),(114,127),(115,128),(116,129),(117,130),(118,131),(119,132),(120,133)], [(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,61),(10,62),(11,63),(12,64),(13,65),(14,66),(15,67),(16,68),(17,69),(18,70),(19,71),(20,72),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,109),(29,110),(30,111),(31,112),(32,113),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,101),(41,136),(42,137),(43,138),(44,139),(45,140),(46,121),(47,122),(48,123),(49,124),(50,125),(51,126),(52,127),(53,128),(54,129),(55,130),(56,131),(57,132),(58,133),(59,134),(60,135),(81,157),(82,158),(83,159),(84,160),(85,141),(86,142),(87,143),(88,144),(89,145),(90,146),(91,147),(92,148),(93,149),(94,150),(95,151),(96,152),(97,153),(98,154),(99,155),(100,156)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,45,31,55),(22,54,32,44),(23,43,33,53),(24,52,34,42),(25,41,35,51),(26,50,36,60),(27,59,37,49),(28,48,38,58),(29,57,39,47),(30,46,40,56),(61,74,71,64),(62,63,72,73),(65,70,75,80),(66,79,76,69),(67,68,77,78),(81,90,91,100),(82,99,92,89),(83,88,93,98),(84,97,94,87),(85,86,95,96),(101,131,111,121),(102,140,112,130),(103,129,113,139),(104,138,114,128),(105,127,115,137),(106,136,116,126),(107,125,117,135),(108,134,118,124),(109,123,119,133),(110,132,120,122),(141,142,151,152),(143,160,153,150),(144,149,154,159),(145,158,155,148),(146,147,156,157)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E4F4G4H4I4J4K4L4M4N5A5B10A···10N10O···10V20A···20P
order12···2222222444444444444445510···1010···1020···20
size11···144101010102222441010101020202020222···24···44···4

68 irreducible representations

dim11111111222222222244
type++++++++++++++-
imageC1C2C2C2C2C2C2C4D4D4D4D5C4oD4D10D10C5:D4C4xD5C4oD20D4xD5D4:2D5
kernelC24.12D10C10.10C42C2xD10:C4C2xC23.D5C10xC22:C4D5xC22xC4C22xC5:D4C2xC5:D4C2xDic5C2xC20C22xD5C2xC22:C4C2xC10C22xC4C24C2xC4C23C22C22C22
# reps12111118224244288862

Matrix representation of C24.12D10 in GL6(F41)

2360000
35180000
00183500
0062300
00003318
0000178
,
4000000
0400000
001000
000100
000010
000001
,
4000000
0400000
0040000
0004000
000010
000001
,
100000
010000
001000
000100
0000400
0000040
,
13130000
2890000
00353500
0064000
0000918
00003232
,
13130000
9280000
00353500
0040600
0000918
00003232

G:=sub<GL(6,GF(41))| [23,35,0,0,0,0,6,18,0,0,0,0,0,0,18,6,0,0,0,0,35,23,0,0,0,0,0,0,33,17,0,0,0,0,18,8],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[13,28,0,0,0,0,13,9,0,0,0,0,0,0,35,6,0,0,0,0,35,40,0,0,0,0,0,0,9,32,0,0,0,0,18,32],[13,9,0,0,0,0,13,28,0,0,0,0,0,0,35,40,0,0,0,0,35,6,0,0,0,0,0,0,9,32,0,0,0,0,18,32] >;

C24.12D10 in GAP, Magma, Sage, TeX

C_2^4._{12}D_{10}
% in TeX

G:=Group("C2^4.12D10");
// GroupNames label

G:=SmallGroup(320,583);
// by ID

G=gap.SmallGroup(320,583);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,387,58,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=f^2=b,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^9>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<